Description
Solution
我们可以想象成把这\(n\)件物品排成一个排列,然后第1个人拿前\(w_1\)个,第2个人拿之后的\(w_2\)个,以此类推。由于每个人拿到的东西的是没有顺序的,还要在方案数上除掉\(w_i!\),别忘了剩下的物品其实也是没有顺序的,也要除以它们的阶乘。所以答案就是\(\dfrac{n!}{(n - \sum_iw_i)!\prod_{i}w_i!}\)。
直接用扩展lucas的思路算就行。
Code
#include#include typedef long long LL;LL n, m, P;LL w[6], tot;void exgcd(LL a, LL b, LL &x, LL &y, LL &d) { if (!b) { d = a; x = 1; y = 0; } else { exgcd(b, a%b, y, x, d); y -= a / b * x; }}LL pow_mod(LL x, LL p, LL mod) { LL ans = 1; for (; p; p>>=1, x=x*x%mod) if (p&1) ans = ans * x % mod; return ans;}LL fac(LL n, LL p, LL pk) { if (!n) return 1; LL ans = 1; for (int i = 2; i <= pk; ++i) if (i%p) ans = ans * i % pk; ans = pow_mod(ans, n/pk, pk); for (int i = 2; i <= n%pk; ++i) if (i%p) ans = ans * i % pk; return ans * fac(n/p, p, pk) % pk;}LL inv(LL n, LL mod) { LL x, y, d; exgcd(n, mod, x, y, d); return (x%=mod) < 0 ? x+mod : x;}LL CRT(LL b, LL mod) { return b*(P/mod)%P*inv(P/mod, mod)%P;}LL calc(LL x, LL p) { LL k = 0; for (; x; x /= p) k += x / p; return k;}LL C(LL p, LL pk) { LL u = fac(n, p, pk), d = inv(fac(n-tot, p, pk), pk); for (int i = 1; i <= m; ++i) { d = d * inv(fac(w[i], p, pk), pk) % pk; } LL k = 0; k += calc(n, p); k -= calc(n-tot, p); for (int i = 1; i <= m; ++i) { k -= calc(w[i], p); } return u * d % pk * pow_mod(p, k, pk) % pk;}void work() { if (tot > n) { puts("Impossible"); return; } LL ans = 0, tmp = P, pk; LL lim = sqrt(P) + 5; for (int i = 2; i <= lim; ++i) if (tmp % i == 0) { pk = 1; while (tmp % i == 0) pk*=i, tmp/=i; ans = (ans + CRT(C(i, pk), pk)) % P; } if (tmp > 1) { ans = (ans + CRT(C(tmp, tmp), tmp)) % P; } printf("%lld\n", ans);}int main() { scanf("%lld%lld%lld", &P, &n, &m); for (int i = 1; i <= m; ++i) scanf("%lld", &w[i]), tot += w[i]; work(); return 0;}
Note
其实还有一种等价的答案:\(\displaystyle{n\choose \sum_i w_i}\prod_i{\sum_{j=i}^nw_j\choose w_i}\)不过这样要算很多次lucas,比较麻烦,也会比较慢。